

Common Integrals

Trig Functions

$\int \sin x dx = -\cos x + c$	$\int \cos x \mathrm{d}x = \sin x + c$	$\int \tan x \mathrm{d}x = \ln \sec x + c$
$\int \csc x dx = \ln \csc x - \cot x + c$	$\int \sec x dx = \ln \sec x + \tan x + c$	$\int \cot x dx = \ln \sin x + c$
$\int \csc^2 x dx = -\cot x + c$	$\int \sec^2 x \mathrm{d}x = \tan x + c$	

Inverse trig functions

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + c \qquad \qquad \int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \sec^{-1} \frac{|x|}{a} + c \qquad \qquad \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + c$$

Exponential & Logarithmic Functions

$$\int e^{x} dx = e^{x} + c$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + c$$

$$\int \frac{1}{x} dx = \ln |x| + c$$

$$\int \frac{1}{ax + b} dx = \frac{1}{a} \ln |ax + b| + c$$

$$\int \ln x dx = x \ln x - x + c$$

Integration by Parts

If f(x) can be considered the product of a function, u, and the derivative of another function, dv, then

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

Choosing *u* & *v*'

L-I-A-T-E

As a rule of thumb (there will be exceptions), choose *u* to be the function that comes first in this list:

- Logarithmic function
- Inverse Trig Function
- Algebraic function
- ► Trig function
- Exponential function

Alternatively...

- Let dv be the most complicated portion of the integrand that can be "easily" integrated.
- Let u be that part of the integrand whose derivative is a "simpler" function than u itself.